

1

### 弾性率ってどう測る?

# 原子間力顕微鏡 (Atomic Force Microscope)とは?





AFM: 超微小領域の機械特性測定とマッピング技術 Force distance curve 測定







Height

© 2021 Bruker

3.0 µm

Innovation with Integrity | 24 June 2025 | 3

3

# <section-header><section-header>

Innovation with Integrity | 24 June 2025 | 4

Arabidopsis Thaliana shoot apical meristem

0

# AFM: 超微小領域の機械特性測定とマッピング技術 ナノ相関イメージング技術 Topography (-60 nm ~ 60 nm) Chemical (Butadiene / Styrene) Adhesion (25 ~ 75 nN) Modulus (1 ~ 12 GPa) Tapping AFM-IR mode PFQNM mode PFQNM mode 400.0 nm 機能(ナノ機械特性) 表面形状 化学構造情報 Styrene-butadiene rubber with a carbon black filler

© 2021 Bruker Innovation with Integrity | 24 June 2025 | 5

6

# 弾性率ってどう測る?

弾性率ってどう測る?

# Bruker AFM ラインナップ (For material research)

Multimode **Dimension Nexus Dimension Icon** - POP M & nanolR Spectroscopy RUNER iconXR Nexus with PeakForce Tanning multimode © 2021 Bruker Innovation with Integrity | 24 June 2025 | 6





BRUKER

2ÚKF



Innovation with Integrity | 24 June 2025 | 7

# AFM 技術に基づく様々なナノ機械特性評価法

| 測定モード                         | 得られる機械特性                   |                        |
|-------------------------------|----------------------------|------------------------|
| Tapping mode (phase)          | 粘弾性マッピング                   | カンチレバーの共振を利用           |
| HarmoniX mode                 | 凝着力, 弾性率, エネルギー散逸, 変形      |                        |
| Torsional Resonance (TR) mode | 摩擦力                        | 4864444444             |
| Contact Resonance (CR) mode   | 凝着力,弾性率,エネルギー散逸,変形,動的粘弾性分析 |                        |
| Force Curve / Force Volume    | 凝着力, 弾性率, エネルギー散逸, 変形      | 非共振動作                  |
| PeakForce QNM                 | 凝着力,弾性率,エネルギー散逸,変形         | DMT fit for<br>modulus |
| Ringing mode                  | 凝着力 (検出にRinging 信号を利用)     |                        |
| AFM-nDMA mode                 | 凝着力,弾性率,エネルギー散逸,変形,動的粘弾性測定 | Dissipation            |

7





10



(\*米国 AppNano 社製カンチレバー)

Innovation with Integrity | 24 June 2025 | 11



# ヤング率 (Young's modulus) と Hertzian contact model



12



試料の ひずみ (δ) は十分に小さい (弾性変形)

探針ー試料間の 接触面積が試料・探針先端に対して十分に小さい 試料は十分な厚みがあり、測定において基板の影響を受けない

探針ー試料間には 相互作用(凝着力・摩擦力)が存在しない



Innovation with Integrity | 24 June 2025 | 13













16



# AFM ナノスケール機械特性測定 のポイント

# サンプル作製

- ・サンプルは比較的滑らかであること
  - < サンプルの形状効果によるアーティファクトを抑制 > ・機械測定においてはサンプル厚 (z) も重要なファクター 薄すぎると基板の影響を受けることがあり、逆に、厚すぎると測定不可とな
    - るケースもあります
- ・ミクロトームやFIBを用いた薄片試料の作製は効果的ですが、加工プロセスが及ぼす試料への影響は注意する必要があります

## カンチレバーの選択

- ・測定試料と同程度のかたさを持つカンチレバーを選択
  - 硬いカンチレバーを使用するとDeflection信号が小さく,逆に,柔らかなカン チレバーでは試料の押し込みが小さく測定が困難となる
- ・探針の曲率半径・カンチレバーのバネ定数は測定値に直接関わるパラメータ 校正済みカンチレバーの利用 or ユーザーによる適切な校正



| Probe Type     | Spring Const.<br>(N/m) | Tip Radius<br>(nm) | min E'<br>(MPa) | max E'<br>(MPa) |
|----------------|------------------------|--------------------|-----------------|-----------------|
| SAA-HPI-DC-125 | 0.25                   | 125                | 0.1             | 10              |
| RTESPA150-125  | 5                      | 125                | 2               | 200             |
| RTESPA300-125  | 40                     | 125                | 20              | 2,000           |
| RFESPA-40-30   | 0.9                    | 33                 | 0.8             | 80              |
| RTESPA150-30   | 5                      | 33                 | 4               | 400             |
| RTESPA300-30   | 40                     | 33                 | 40              | 4,000           |
| RTESPA525-30   | 200                    | 33                 | 200             | 20,000          |
|                |                        |                    |                 |                 |

Innovation with Integrity | 24 June 2025 | 17



# AFM ナノスケール機械特性測定 のポイント

## 測定モードの選択

| Technique                         | Mode                         | Category     | Elastic Modulus<br>Range | Applications                                                                                      | Acquisition<br>Time<br>(256x256 image) |
|-----------------------------------|------------------------------|--------------|--------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------|
| Dynamic<br>Mechanical<br>Analysis | AFM-nDMA                     | Non-Resonant | < 1 kPa to 100 GPa       | Quantitative viscoelastic<br>analysis; point measurements<br>and mapping                          | 14 min                                 |
| PeakForce<br>Tapping              | PeakForce QNM                | Non-Resonant | <1 kPa to 100 GPa        | Nanoscale material property<br>mapping with quantitative<br>results                               | 4 min                                  |
| Force Volume                      | FASTForce Volume             | Non-Resonant | <1 kPa to 100 GPa        | Nanoscale force mapping and<br>point spectroscopy                                                 | 14 min                                 |
|                                   | FASTForce<br>Volume CR       | Combined     | <1 GPa to<br>>300 GPa    | Elastic and viscoelastic moduli<br>for materials characterization                                 | 33 min                                 |
| Tapping                           | Phase Imaging                | Resonant     | 1 MPa to 100 GPa         | Qualitative contrast convolving elasticity, adhesion, dissipation                                 | 4 min                                  |
|                                   | HarmoniX                     | Resonant     | 10 MPa to 10 GPa         | Nanoscale material<br>property mapping                                                            | 4 min                                  |
|                                   | Torsional<br>Resonance       | Resonant     | N/A                      | Qualitative contrast convolving<br>elasticity, adhesion, dissipation<br>and friction at low force | 4 min                                  |
| Contact                           | Friction Force<br>Microscopy | Non-Resonant | N/A                      | Nanotribology, lattice resolution                                                                 | 4 min                                  |



### 弾性率像



Sample: 3-conpound polymer

Innovation with Integrity | 24 June 2025 | 19

Innovation with Integrity | 24 June 2025 | 18







Innovation with Integrity