ブルカージャパン ナノ表面計測事業部 ウェビナー

弾性率ってどう測る? ~AFM vs. ナノインデンター~ AFMとナノインデンターの事例紹介

DNP

未来のあたりまえをつくる。

2025年06月23日

株式会社DNP科学分析センター 高分子分析研究室 堀口 高英

C2025 Dai Nippon Printing Co., Ltd. All Rights Reserved.

DNP Scientific Analysis Center, Inc.

会社紹介

SPMとナノインデンターの比較

SPM及びナノインデンターの分析事例

ポリマーアロイの弾性率測定 PAの粘弾性測定

自動車への高分子材料の利用例

タイヤゴムの粘弾性測定 繊維強化樹脂のプッシュアウト試験

- 1987年 宇部興産株式会社の分析・物性評価部門を独立し、 「株式会社ユービーイー科学分析センター」を設立
- 2011年 「株式会社UBE科学分析センター」に社名を変更
- **2024**年 大日本印刷株式会社とUBE株式会社の合弁会社化
- 2025年4月 「株式会社DNP科学分析センター」に社名を変更

設立 :1987年4月 株主 :大日本印刷株式会社66.625% UBE株式会社33.375% 人員 :113名 (2025.6) 営業拠点:東京,千葉,名古屋,大阪,宇部(山口県) 分析拠点:宇部地区(有機・無機・表面・形態・物性・安全性)、千葉地区(高分子) 企業理念:分析技術を駆使してお客様の研究開発と課題解決に寄与し、もって、人類社会の発展に貢献します。 キャッチフレーズ:技術の未来を支える					
エネルギー分野 燃料電池 (PEFC) 各種部材 (バンパー他) 排ガス触媒 (ディーゼル他) 軽量化技術 (CFRP他) グローバル調達 (樹脂)	エ Liイオン二次電池 キャパシタ パワー半導体	レクトロニクス分野 Si・化合物半導体 太陽電池 記録材料 (HDD他) LED・LD素子 FDP (液晶, EL他)		ライフサイエンス分野 医薬品・医療器具 化粧品・医薬部外品 食品・健康食品 各種規格試験 安定性試験・安全性評価	;
高分子複合材料 高分子物性評価 触媒材料	発生ガス 界面接合 カーボン (CNT他)	メッキ・配線材料 レジスト材料 フィルム材料	多層フ 異物・ 各種不	 イルム 糖・ペプチド 変色 包装材料 純物 粉体材料 	

会社紹介

AFM、ナノインデンターは幅広い材料の構造解析から課題解決に寄与

原子間力顕微鏡およびナノインデンターとは

原子間力顕微鏡 AFM

- 走査型プローブ顕微鏡 (Scanning Probe Microscope : SPM) とは
- ・試料表面の微小領域をプローブを用いて走査することにより、三次元形状情報
- ・プローブ・試料間の物理情報をマッピングできる顕微鏡の総称
 (試料最表面の情報のみが得られる)
- ・SPMが上位概念で、AFM(Atomic Force Microscope)等は下位概念
- ・ピークフォースタッピングにより機械特性(<mark>弾性率</mark>、凝着力)が取得可能

ナノインデンター

- ・予め表面形状を校正した圧子を用いて、ナノ・マイクロスケールで押し込み試験を行う装置
- ・得られた荷重-変位曲線から、硬さ、<mark>弾性率</mark>を算出する
- ・圧子はサンプルに応じ、様々な種類を選択可能

SPMとナノインデンターの比較

比較項目	SPM	ナノインデンター
グラフ	フォースカーブ	荷重変位曲線
プローブ	カンチレバー 先端径;10nm程度(鋭角)	圧子 142° 先端径;100nm程度(鈍角)
押込荷重	$nN \sim \mu N$	$\mu N \sim mN$
押込深さ	~10nm	数十nm~数十µm
測定時間	msec	sec
マッピング	可能	不可※
定量性	低い(ナノインデンターに比べて)	高い
変形	弾性変形(+塑性変形)	弾性変形 + 塑性変形
解析方法	DMT、Hertz、JKR	Oliver–Pharr
情報	表面形状、弾性率、吸着力、磁気力	複合弾性率、硬さ

グラフ

引用; Bruker Application Note #128

DNP

プローブ

SPM [カンチレバー]

MLCT-C TESP-V2 ScanAsyst FastScan A and D

• Spring constant $k = \frac{E}{2} \frac{w \cdot t^{3}}{2}$

 $4 L^{3}$

• Resonance frequency $f_{\theta} = 0.162 \cdot \sqrt{\frac{E}{\rho}} \cdot \frac{t}{L^2} \approx \frac{l}{2\pi} \sqrt{\frac{E}{\rho}} \cdot \frac{t}{L^2}$ ilever material

E: Young's Modulus of the cantilever material *k*: Cantilever spring constant

 \sqrt{p} L $2\pi \sqrt{p}$ L f_0 : Cantilever resonance frequency ρ : Density of the material

	SAA-HPI-30	RTESPA-150-30	RTESPA-300-30	RTESPA-525-30
弾性率レンジ	100kPa-15Mpa	10-500MPa	300MPa-10GPa	8GPa-100GPa
先端曲率	30 nm	30 nm	30 nm	30 nm
バネ定数	0,25 N/m-55kHz	5 N/m-150kHz	40 N/m-300kHz	200 N/m-525kHz
測定モード	PF-QNM/QI/Force Volume/Force Curves, AFM-nDMA	PF-QNM/QI/Force Volume/Force Curves AFM-nDMA	PF-QNM/QI/Force Volume/Force Curves AFM-nDMA	PF-QNM/QI/Force Volume/Force Curves
0.000			A the second sec	

引用 Bruker プローブの選び方と最新プローブの紹介

ナノインデンター [圧子]

バーコビッチ圧子

最も広く用いられる圧子で、 一般的な押し込み試験で幅広く利用。

バーコビッチ型圧子より鋭い 形状のため、押し込み試験の 間隔を狭めたい場合などに利用。 薄膜の破壊靭性の評価にも利用。

ポリマー材料を中心とした柔らかい 材料の機械的特性の測定に幅広く利用。

フラットエンド圧子

非常に柔らかいサンプルの試験か プッシュアウト試験などに利用。

<mark>試料</mark>

ポリジメチルシロキサン [Bruker標準試料:PDMS-MED-1-12M(<mark>84 MPa</mark>)]

: RTESPA150

 $:5 \times 5 \mu$ m

<mark>測定条件</mark>

プローブ 測定エリア

測定条件

SPM

試料

<mark>測定結果</mark>

ナノインデンター [Oliver-Pharr法]

W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.

DNP

当社保	有装置		DNP
		NOT RECEIPTION OF THE RECEIPTI	
壮罟	SF	ЪМ	ナノインデンター
衣但	MultiMode8	Dimension icon XR	TI Premier Multi Scale
最大荷重	プローブによる		低荷重モード10mN、高荷重モード1N
最大変位	プローブによる		低荷重モード5μm、高荷重モード80μm
最大試料サイズ	15 mmΦ (or 10 mm□) ×5 mmt	210mm Φ (or 150 mm \Box) ×15 mmt	50×100×50mmt
最大測定範囲	$125 imes 125 \ \mu$ m	90×90 µm以下	50×100mm
測定モード	表面形状、弾性率、吸着力、 微小電流、拡がり抵抗、表面電位	表面形状、 弾性率(柔らかい試料、硬い試料)、 吸着力、粘弾性(マッピング、1点)、 (微小電流、拡がり抵抗、表面電位)	複合弾性率、硬さ、粘弾性、 界面せん断強度
測定温度	室温	-35~250°C	室温~400°C
測定環境	大気中、水中、Ar雰囲気下	大気中、(Ar雰囲気下)	大気中、水中

試料; EPDM/PP/PA 三元グラフト共重合体 前処理; ウルトラミクロトーム(凍結) 測定; SPM、ナノインデンター

同一材料における比較1

Rubber Polyolefin (R) (PO)

Rubber Composites ゴム・ポリオレフィン・ナイロン三元グラフト共重合体の模式図^{*}

Nylon

(PA)

成分	ヤング率(MPa)
PA6	2,600
PP	1,300
EPDM	5

SPM弾性率像は3成分のコントラストが明確で、各成分の一般的なヤング率と弾性率像が整合

引用;日本レオロジー学会誌 Vol.25 1997.

同一材料における比較2

DNP

DMAとnanoDMAのガラス転移温度は同等であった

自動車への高分子材料の利用例

タイヤゴムに求められること

省資源化、安全対策

⇒シリカ粒子とゴムの界面強度の向上

DNP

燃費向上への動き

省エネルギー、CO₂排出量削減

⇒金属から高分子材料(繊維強化樹脂)への代替

部品	軽量効果(kg)
プラットフォーム	-150
フード	-12
ルーフ	-10
ディフューザー	-10
トランクリッド	-5
プロペラシャフト	-5
リアスポイラー	-4
インパクトビーム	-3

材料の性能には界面の力学物性が重要

タイヤゴムの粘弾性測定

DNP

劣化によるゴムの粘弾性の変化

ゴムの粘弾性 tan δ がタイヤ性能に関係 → 劣化前後のタイヤ断面をSPMにより粘弾性測定

劣化による粘弾性変化をサブμmスケールで評価

繊維強化樹脂のプッシュアウト試験

試料;CF/Epoxy(UD材)

荷重変位曲線

試験前後のOM像

試験後のSEM像

荷重変位曲線やSEM像から界面はく離が確認され、界面せん断強度を算出できた。 ダンベル試験片(射出成形品)や他の材料系(GF、熱可塑性樹脂、セラミック系)でも実績あ10

「未来のあたりまえをつくる。」はDNP大日本印刷の登録商標です。